
334 Web Applications with C#.ASP

Close the browser and stop debugging. Go to the booking.aspx page and add code to the ‘content2’

section. This will provide drop down lists for selecting the number of berths and boat name, and

choosing a week, weekend or mid-week hire period.

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="server">

 <div id="leftColumn">

 <table cellpadding="6">

 <tr>

 <td>Berths</td>

 <td>

 <asp:DropDownList ID="ddlBerths" runat="server" AutoPostBack="True" >

 <asp:ListItem>2</asp:ListItem>

 <asp:ListItem>4</asp:ListItem>

 <asp:ListItem>6-8</asp:ListItem>

 </asp:DropDownList>

 </td>

 </tr>

 <tr>

 <td>Boat name</td>

 <td>

 <asp:DropDownList ID="ddlBoatNames" runat="server">

 </asp:DropDownList>

 </td>

 <td>

 <asp:Button ID="btnAvailability" runat="server"

 Text="Show availability" />

 </td>

 </tr>

 <tr>

 <td>Hire period wanted</td>

 <td colspan="2">

 <asp:RadioButton ID="rbWeek" runat="server" GroupName="nights"

 Checked="true" Text="Saturday to Saturday (7 nights)" />

 <asp:RadioButton ID="rbWeekend" runat="server" GroupName="nights"

 Text="Saturday to Tuesday (3 nights)" />

 <asp:RadioButton ID="rbMidweek" runat="server" GroupName="nights"

 Text="Tuesday to Saturday (4 nights)" />

 </td>

 </tr>

 </table>

 </div>

</asp:Content>

 Chapter 10: Canal Boat Holidays 335

Build and run the booking.aspx web page. Check that the components are displayed correctly.

There are currently no boat names shown in the second drop down list. We will arrange for the

correct names to be added when the number of berths is selected. We have combined the three

radio buttons into a group, called ‘nights’, so that only one of the buttons can be selected at a time.

Close the browser and stop debugging. Go to the end of ‘content2’ section of the booking.aspx

page and add a ‘rightColumn’ division containing a label.

 <asp:RadioButton ID="rbMidweek" runat="server" GroupName="nights"

 Text="Tuesday to Saturday (4 nights)" />

 </td>

 </tr>

 </table>

 </div>

 <div id="rightColumn">

 <asp:Label ID="Label1" runat="server"></asp:Label>

 </div>

</asp:Content>

Change to the Design view. Select the ddlBerths drop down list component and double click to

create a SelectedIndexChanged() method.

Add code to the method.

 protected void ddlBerths_SelectedIndexChanged(object sender, EventArgs e)

 {

 setBoatNames(ddlBerths.Text);

 Label1.Text =

 "Please select a boat and click button to show availability...";

 }

336 Web Applications with C#.ASP

Immediately after this method, insert the code for a setBoatNames() method. This will check

through the canalBoat objects and pick out those which have the requested number of berths. The

boat names will be added to the second drop down list.

 protected void setBoatNames(string berths)

 {

 ddlBoatNames.Items.Clear();

 if (berths == "6-8")

 {

 berths = "6";

 }

 int berthsWanted = Convert.ToInt16(berths);

 for (int i = 0; i < canalBoat.boatCount; i++)

 {

 int berthsProvided = canalBoat.boatObject[i].berths;

 if (berthsProvided > 6)

 {

 berthsProvided = 6;

 }

 if (berthsWanted == berthsProvided)

 {

 ddlBoatNames.Items.Add(canalBoat.boatObject[i].boatName);

 }

 }

 }

Before running the page, we must load the canalBoat objects. We can also set the web page to

initially list the 2 berth boats, and the user may then re-select a different size category if they wish.

Go to the Page_Load() method near the start of the booking.aspx C# code page and add code to

carry out these tasks.

 protected void Page_Load(object sender, EventArgs e)

 {

 if (canalBoat.boatCount == 0)

 {

 canalBoat.loadBoats();

 }

 if (ddlBoatNames.Text == "")

 {

 setBoatNames("2");

 Label1.Text =

 "Please select a boat and click button to show availability...";

 }

 }

 Chapter 10: Canal Boat Holidays 337

Build and run the booking.aspx web page. Check that the correct boat names are displayed in the

drop down list for each size category.

Close the browser and stop debugging. Go to the booking.aspx page Design view and double click

the ‘Show availability’ button to create a button_click() method.

 protected void btnAvailability_Click(object sender, EventArgs e)

 {

 boatNameWanted = Convert.ToString(ddlBoatNames.SelectedItem);

 displayBoat(boatNameWanted);

 }

Add variables at the start of the code page.

 public partial class booking : System.Web.UI.Page

 {

 public static string boatNameWanted;
 public static int boatIDwanted;

 protected void Page_Load(object sender, EventArgs e)

 {

Return to the bottom of the code page and add a displayBoat() method after the button_click

method. This will display the details of the selected boat by means of the label component in the

right hand column. We can do this easily by copying code which has already been written for the

boats web page.

 protected void displayBoat(string boatWanted)

 {

 string s = "";

 string boatName;

 int photoID;

 for (int i = 0; i < canalBoat.boatCount; i++)

 {

 boatName = canalBoat.boatObject[i].boatName;

 if (boatName == boatWanted)

 {

 boatIDwanted = canalBoat.boatObject[i].boatID;

 s += "<h3>" + canalBoat.boatObject[i].boatName + "</h3>";

 s += canalBoat.boatObject[i].berths + " berths

";

 s += canalBoat.boatObject[i].boatDescription + "

";

338 Web Applications with C#.ASP

 photoID = canalBoat.boatObject[i].boatID;

 if (canalBoat.boatObject[i].pictureLoaded == true)

 {

 s += "<img src='Handler3.ashx?imgid=" + photoID + "' width='300'

 border='0' >";

 }

 double priceWeek = canalBoat.boatObject[i].higherWeek;

 string priceStringWeek = String.Format("{0:.##}", priceWeek);

 double priceDay = canalBoat.boatObject[i].higherDay;

 string priceStringDay = String.Format("{0:.##}", priceDay);

 s += "<h3>Peak: weekly £" + priceStringWeek +

 " daily £" + priceStringDay + "</h3>";

 priceWeek = canalBoat.boatObject[i].lowerWeek;

 priceStringWeek = String.Format("{0:.##}", priceWeek);

 priceDay = canalBoat.boatObject[i].lowerDay;

 priceStringDay = String.Format("{0:.##}", priceDay);

 s += "<h3>Off-peak: weekly £" + priceStringWeek +

 " daily £" + priceStringDay + "</h3>";

 }

 }

 Label1.Text = s;

 }

Build and run the web page. Check that boat details are displayed correctly when a boat is selected

from the drop down list.

Close the browser and stop debugging. The next step is to provide an interactive calendar. This will

display the available hire dates for any selected boat, and allow the user to input their choice of hire

period. We will use similar techniques to the Holiday cottage bookings project in Chapter 7.

 Chapter 10: Canal Boat Holidays 339

Go to the booking.aspx page and add code at the end of the ‘leftColumn’ division, following the set

of radio group components.

 <asp:RadioButton ID="rbMidweek" runat="server" GroupName="nights"

 Text="Tuesday to Saturday (4 nights)" />

 </td>

 </tr>

</table>

<asp:Calendar ID="Calendar1" runat="server" BackColor="White"

 BorderColor="#999999" CellPadding="4" DayNameFormat="Shortest"

 Font-Names="Verdana" Font-Size="8pt" ForeColor="Black"

 Height="200px" Width="340px" FirstDayOfWeek="Saturday" >

 <DayHeaderStyle BackColor="#CCCCCC" Font-Bold="True" Font-Size="7pt" />

 <NextPrevStyle VerticalAlign="Bottom" />

 <OtherMonthDayStyle ForeColor="#808080" />

 <SelectedDayStyle BackColor="#666666" Font-Bold="True" ForeColor="White" />

 <SelectorStyle BackColor="#CCCCCC" />

 <TitleStyle BackColor="#999999" BorderColor="Black" Font-Bold="True" />

 <WeekendDayStyle BackColor="#FFFFCC" />

</asp:Calendar>

<asp:DropDownList ID="ddlMonth" runat="server" AutoPostBack="True" >

 <asp:ListItem Value="1">January</asp:ListItem>

 <asp:ListItem Value="2">February</asp:ListItem>

 <asp:ListItem Value="3">March</asp:ListItem>

 <asp:ListItem Value="4">April</asp:ListItem>

 <asp:ListItem Value="5">May</asp:ListItem>

 <asp:ListItem Value="6">June</asp:ListItem>

 <asp:ListItem Value="7">July</asp:ListItem>

 <asp:ListItem Value="8">August</asp:ListItem>

 <asp:ListItem Value="9">September</asp:ListItem>

 <asp:ListItem Value="10">October</asp:ListItem>

 <asp:ListItem Value="11">November</asp:ListItem>

 <asp:ListItem Value="12">December</asp:ListItem>

 </asp:DropDownList>

<asp:Button ID="btnClear" runat="server" Text="Clear selection" />

<table cellpadding="6">

 <tr>

 <td> Start date: </td>

 <td>

 <asp:TextBox runat="server" ID="txtStartDate" Width="120px"></asp:TextBox>

 </td>

 <td>Finish date: </td>

 <td>

 <asp:TextBox runat="server" ID="txtFinishDate" Width="120px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Cost £</td>

340 Web Applications with C#.ASP

 <td>

 <asp:TextBox runat="server" ID="txtCost" Width="98px"></asp:TextBox>

 </td>

 </tr>

 </table>

 <asp:Button ID="btnBook" runat="server" Text="Make booking" />

 <center>

 <asp:Label ID="lblMessage" runat="server"></asp:Label>

 </center>

 </div>

 <div id="rightColumn">

 <asp:Label ID="Label1" runat="server"></asp:Label>

 </div>

Build and run the booking.aspx web page. A calendar, text boxes and buttons should have been

added. Check that the drop down list below the calendar shows a list of months.

Close the browser and stop debugging.

 Chapter 10: Canal Boat Holidays 341

Before going further with programming the on-line booking system, we need to set up a database

table to hold the bookings received.

Go to the Server Explorer window and open the canalHolidays.mdf database. Right click the Tables

icon and select ‘Add New Table’. Insert fields as shown below, making the bookingID field an auto-

number by setting the Identity Specification / (Is Identity) property to ‘Yes’

Close the table and give the name ‘bookings’.

We now require an object class to hold the bookings. Go to the Solution Explorer window and right

click the Canal holidays project icon. Select Add / New Item and choose Class. Give the name

‘customerBookings’.

342 Web Applications with C#.ASP

Open the customerBookings.cs class file and add code as shown below. We begin by including

directives to include the System.Data.SqlClient and System.Data code modules when the class is

compiled. Properties are set up for bookingObject to hold the data from fields of the bookings

database table. A loadBookings() method is then produced to create the set of customerBooking

objects.

using System.Linq;

using System.Web;

using System.Data.SqlClient;

using System.Data;

namespace Canal_holidays

{

 public class customerBookings

 {

 public static int bookingCount = 0;

 public static customerBookings[] bookingObject = new customerBookings[200];

 public static string databaseLocation =

 "C:\\WEB APPLICATIONS\\canalHolidays.mdf;";

 public int bookingID { get; set; }

 public string boatName { get; set; }

 public string startDate { get; set; }

 public string finishDate { get; set; }

 public double cost { get; set; }

 public string customerTitle { get; set; }

 public string forename { get; set; }

 public string surname { get; set; }

 public string address1 { get; set; }

 public string address2 { get; set; }

 public string town { get; set; }

 public string postcode { get; set; }

 public string email { get; set; }

 public string phone { get; set; }

 public string dateReceived { get; set; }

 public static void loadBookings()

 {

 DataSet dsBookings = new DataSet();

 SqlConnection cnTB = new SqlConnection(@"Data Source=.\SQLEXPRESS;

 AttachDbFilename=" + databaseLocation + "Integrated Security=True;

 Connect Timeout=30; User Instance=True");

 try

 {

 cnTB.Open();

 SqlCommand cmBooking = new SqlCommand();

 cmBooking.Connection = cnTB;

 cmBooking.CommandType = CommandType.Text;

 cmBooking.CommandText = "SELECT * FROM bookings";

 SqlDataAdapter daBooking = new SqlDataAdapter(cmBooking);

 daBooking.Fill(dsBookings);

 cnTB.Close();

 Chapter 10: Canal Boat Holidays 343

 int countRecords = dsBookings.Tables[0].Rows.Count;

 bookingCount = 0;

 for (int i = 0; i < countRecords; i++)

 {

 DataRow drBooking = dsBookings.Tables[0].Rows[i];

 int bookingID = (int)drBooking[0];

 string boatName = Convert.ToString(drBooking[1]);

 string startDate = Convert.ToString(drBooking[2]);

 string finishDate = Convert.ToString(drBooking[3]);

 double cost = Convert.ToDouble(drBooking[4]);

 string customerTitle = Convert.ToString(drBooking[5]);

 string forename = Convert.ToString(drBooking[6]);

 string surname = Convert.ToString(drBooking[7]);

 string address1 = Convert.ToString(drBooking[8]);

 string address2 = Convert.ToString(drBooking[9]);

 string town = Convert.ToString(drBooking[10]);

 string postcode = Convert.ToString(drBooking[11]);

 string email = Convert.ToString(drBooking[12]);

 string phone = Convert.ToString(drBooking[13]);

 string dateReceived = Convert.ToString(drBooking[14]);

 bookingObject[bookingCount] = new customerBookings();

 bookingObject[bookingCount].bookingID = bookingID;

 bookingObject[bookingCount].boatName = boatName;

 bookingObject[bookingCount].startDate = startDate;

 bookingObject[bookingCount].finishDate = finishDate;

 bookingObject[bookingCount].cost = cost;

 bookingObject[bookingCount].customerTitle = customerTitle;

 bookingObject[bookingCount].forename = forename;

 bookingObject[bookingCount].surname = surname;

 bookingObject[bookingCount].address1 = address1;

 bookingObject[bookingCount].address2 = address2;

 bookingObject[bookingCount].town = town;

 bookingObject[bookingCount].postcode = postcode;

 bookingObject[bookingCount].email = email;

 bookingObject[bookingCount].phone = phone;

 bookingObject[bookingCount].dateReceived = dateReceived;

 bookingCount++;

 }

 }

 catch

 {

 }

 }

344 Web Applications with C#.ASP

Return to booking.aspx and open the C# code page. Add a ‘using System.Drawing’ directive at the

start of the page.

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Drawing;

Go now to the booking.aspx design view. Select the calendar component. Click the ‘methods’

button in the Properties window, indicated by a lightening flash icon. Double click alongside the

‘DayRender’ method. This will create a method which operates as each day is added to the

calendar, and will allow us to show dates booked or available using different colour formatting.

Bookings cannot be made for dates which have passed. Add code to the DayRender() method to

deactivate these dates.

 protected void Calendar1_DayRender(object sender, DayRenderEventArgs e)

 {

 DateTime currentDate = Calendar1.TodaysDate;

 if (e.Day.Date <= currentDate)

 {

 e.Day.IsSelectable = false;

 e.Cell.BackColor = Color.Gainsboro;

 }

 }

 Chapter 10: Canal Boat Holidays 345

Build and run the booking.aspx web page. Check that all dates up to and including today’s date are

shown in grey. A date in the future can be selected by mouse click, but past dates should not be

selectable.

Close the browser and stop debugging. Return to the booking.aspx design view. Select the

ddlMonth component and click the small arrow icon to open the task list. Make sure that there is a

tick alongside ‘Enable AutoPostback’ – this is necessary to ensure the web page responds

immediately if a different month is selected.

Double click the ddlMonth component to create a SelectedIndexChanged() method and add lines of

code. If a month is selected which comes before the current month name, we will assume that it

refers to the next calendar year. For example, if in August 2014 the user selects the month of

March, we will select March 2015 on the calendar.

 protected void ddlMonth_SelectedIndexChanged(object sender, EventArgs e)

 {

 int month = Convert.ToInt16(ddlMonth.SelectedValue);

 int thisMonth = DateTime.Today.Month;

 int thisYear = DateTime.Today.Year;

 if (month < thisMonth)

 thisYear++;

 string dateString = "01-" + month + "-" + thisYear;

 Calendar1.VisibleDate = Convert.ToDateTime(dateString);

 }

346 Web Applications with C#.ASP

Build and run the booking.aspx web page. Check that months can be selected correctly.

Close the web browser and stop debugging. Return to booking.aspx and change to the design view.

Select the calendar component. Click the ‘methods’ button in the Properties window, indicated by

the lightening flash icon. Double click alongside the ‘SelectionChanged’ method. This will create a

method which can carry out actions when the user clicks on a date.

We will now add code to the SelectionChanged() method. The intention is that the user clicks on

any date within the period that they wish to book, and the calendar will indicate the nights selected.

 For a week’s booking, Saturday to Friday will be highlighted

 For a weekend booking, Saturday to Monday will be highlighted

 For a midweek booking, Tuesday to Friday will be highlighted.

The program does this by identifying the day selected on the calendar, then filling in the remaining

days according to the hire period wanted. We must allow for an incorrect day being selected, for

example if the user requires a weekend booking but clicks on a midweek date. In this case, the

selection will be removed from the calendar and the user must click on another date.

 Chapter 10: Canal Boat Holidays 347

Go to the SelectionChanged() method and add lines of code. Also create the clearEntries() method

immediately following SelectionChanged() .

 protected void Calendar1_SelectionChanged(object sender, EventArgs e)

 {

 string periodStart = "";

 string periodFinish = "";

 int period = 0;

 DateTime currentDate = Calendar1.SelectedDate;

 int daynumber = Convert.ToInt16(currentDate.DayOfWeek);

 bool dayValid = true;

 DateTime startDate;
 DateTime finishDate;
 string currentDay = Convert.ToString(currentDate.DayOfWeek);
 string startMonth="";
 string finishMonth="";
 int startM=0;
 int finishM=0;

 if (rbWeek.Checked == true)

 {

 periodStart = "Saturday";

 periodFinish = "Friday";

 period=7;

 }

 if (rbWeekend.Checked == true)

 {

 periodStart = "Saturday";

 periodFinish = "Monday";

 if (daynumber > 1 && daynumber < 6)

 {

 dayValid = false;

 }

 period=3;

 }

 if (rbMidweek.Checked == true)

 {

 periodStart = "Tuesday";

 periodFinish = "Friday";

 if (daynumber < 2 || daynumber == 6)

 {

 dayValid = false;

 }

 period=4;

 }

 if (dayValid == false)

 {

 clearEntries();

 }

 else

 {

 }

 }

348 Web Applications with C#.ASP

 protected void clearEntries()

 {

 Calendar1.SelectedDates.Clear();

 }

The section of code above checks for the starting and finishing nights for the hire period. We can

now highlight the corresponding dates on the calendar. Go to the ELSE condition at the end of the

SelectionChanged() method and add lines of code. This is similar to the procedure we used in the

Holiday cottage bookings project for highlighting a complete week’s booking.

 if (dayValid == false)

 {

 clearEntries();

 }

 else

 {

 while (currentDay != periodStart)

 {

 currentDate = currentDate.AddDays(-1);

 currentDay = Convert.ToString(currentDate.DayOfWeek);

 Calendar1.SelectedDates.Add(currentDate);

 }

 currentDate = Calendar1.SelectedDate;

 currentDay = Convert.ToString(currentDate.DayOfWeek);

 while (currentDay != periodFinish)

 {

 currentDate = currentDate.AddDays(1);

 currentDay = Convert.ToString(currentDate.DayOfWeek);

 Calendar1.SelectedDates.Add(currentDate);

 }

 }

Build and run the booking.aspx web page. Check that the correct nights are highlighted when a

booking is selected for a week, weekend or midweek period.

 Chapter 10: Canal Boat Holidays 349

Close the web browser and stop debugging. We can now display the start and finish dates of the

holiday in the text boxes below the calendar. Add further lines of code to the ELSE condition at the

end of the SelectionChanged() method.

 else

 {

 while (currentDay != periodStart)

 {

 currentDate = currentDate.AddDays(-1);

 currentDay = Convert.ToString(currentDate.DayOfWeek);

 Calendar1.SelectedDates.Add(currentDate);

 }

 startDate = currentDate;

 currentDate = Calendar1.SelectedDate;

 currentDay = Convert.ToString(currentDate.DayOfWeek);

 while (currentDay != periodFinish)

 {

 currentDate = currentDate.AddDays(1);

 currentDay = Convert.ToString(currentDate.DayOfWeek);

 Calendar1.SelectedDates.Add(currentDate);

 }

 currentDate = currentDate.AddDays(1);

 finishDate = currentDate;

 string format = "ddd MMM d, yyyy";

 txtStartDate.Text = startDate.ToString(format);

 txtFinishDate.Text = finishDate.ToString(format);

 }

Build and run the booking.aspx web page. Check that the start and finish dates of the holiday are

shown correctly. Please note that the calendar records the nights when the boat is on hire, whilst

the finish date is the last morning of the holiday when the customer returns the boat.

In this example, a boat has been hired for seven nights, from 30 August to 5 September, and is then

returned on the morning of 6 September. It is necessary to display bookings in this way, as the boat

should be shown as available for hire by another customer beginning on 6 September.

350 Web Applications with C#.ASP

Close the browser and stop debugging. The next step is to calculate the price for the holiday. This

will depend on:

 The boat chosen,

 The number of nights chosen,

 The time of year, with either peak or off-peak rates applying. We will assume that the peak

period is from April to August, with off-peak rates applying at other times. We will also

assume that if any part of the hire period falls within a peak month, then the peak rate will

be applied to the whole of the booking.

Go to the end of the SelectionChanged() method and add further lines of code. Create a getCost()

method immediately below SelectionChanged().

 finishDate = currentDate;

 string format = "ddd MMM d, yyyy";

 txtStartDate.Text = startDate.ToString(format);

 txtFinishDate.Text = finishDate.ToString(format);

 startMonth = startDate.Month.ToString("00");

 startM = Convert.ToInt16(startMonth);

 finishMonth = finishDate.Month.ToString("00");

 finishM = Convert.ToInt16(finishMonth);

 double cost = getCost(startM, finishM, boatNameWanted, period);

 format = "0.00";

 txtCost.Text = cost.ToString(format);

 }

 }

 protected double getCost(int startM, int finishM, string boatWanted, int period)

 {

 double cost=0;

 string rate="off-peak";

 string boatName;

 double higherWeek=0;

 double higherDay=0;

 double lowerWeek=0;

 double lowerDay=0;

 return cost;

 }

This code obtains the month numbers for the start and finish dates of the holiday. For example, if

the holiday begins on 30 August and ends on 6 September, the start month value is 8 and the finish

month value is 9. These month numbers are passed to the getCost() method, along with the name

of the boat required and the number of nights for which it will be hired. We therefore have all the

information needed to find the cost of the holiday.

 Chapter 10: Canal Boat Holidays 351

Add code to the getCost() method

 double lowerWeek=0;

 double lowerDay=0;

 if (finishM >= 4 && startM <= 8)

 {

 rate = "peak";

 }

 for (int i = 0; i < canalBoat.boatCount; i++)

 {

 boatName = canalBoat.boatObject[i].boatName;

 if (boatName == boatWanted)

 {

 higherWeek = canalBoat.boatObject[i].higherWeek;

 higherDay = canalBoat.boatObject[i].higherDay;

 lowerWeek = canalBoat.boatObject[i].lowerWeek;

 lowerDay = canalBoat.boatObject[i].lowerDay;

 }

 }

 switch (period)

 {

 case 3:

 if (rate == "peak")

 {

 cost = higherDay * 3;

 }

 else

 {

 cost = lowerDay * 3;

 }; break;

 case 4:

 if (rate == "peak")

 {

 cost = higherDay * 4;

 }

 else

 {

 cost = lowerDay * 4;

 }; break;

 case 7:

 if (rate == "peak")

 {

 cost = higherWeek;

 }

 else

 {

 cost = lowerWeek;

 }; break;

 }

 return cost;

 }

352 Web Applications with C#.ASP

The method begins by determining whether the start or finish month falls within the peak period. It

checks for the required boat and obtains the weekly and daily hire costs. A CASE structure then

selects the number of nights booked, and calculates the cost according to whether the booking is

charged at peak or off-peak rate.

Build and run the booking.aspx web page. Check the price calculations by selecting various different

boats, length of hire period and month.

Close the browser and stop debugging. During the testing you may have noticed a couple of

problems which we will correct now…

If the user selects a holiday date without first selecting a canal boat, an error in the cost occurs. To

avoid this, we will disable the calendar until a boat is chosen.

Go to the booking.aspx page and change to Design view. Select the calendar component. Move to

the Properties window and set the value of ‘Enabled’ to false. This means that it will not be possible

to select a date on the calendar when the page first opens.

 Chapter 10: Canal Boat Holidays 353

Go now to the C# code page for booking.aspx and locate the displayBoat() method. Add lines of

code to enable the calendar so that dates can now be selected.

 protected void displayBoat(string boatWanted)

 {

 string s = "";

 string boatName;

 int photoID;

 Calendar1.Enabled = true;

 clearEntries();

 for (int i = 0; i < canalBoat.boatCount; i++)

 {

Another problem found during testing is that the text boxes for start and finish holiday dates and

cost are not cleared when the calendar is reset. Locate the clearEntries() method and add lines of

code to do this.

 protected void clearEntries()

 {

 Calendar1.SelectedDates.Clear();

 txtStartDate.Text = "";

 txtFinishDate.Text = "";

 txtCost.Text = "";

 }

Return to the booking.aspx Design view and double click the ‘Clear selection’ button to create a

button_click() method.

Add a line to btnClear_Click() method to call the clearEntries() method.

 protected void btnClear_Click(object sender, EventArgs e)

 {

 clearEntries();

 }

354 Web Applications with C#.ASP

We will also call the clearEntries() method if a different month is chosen from the drop down list.

Locate the ddlMonth_SelectedIndexChanged() method and add the line of code.

 protected void ddlMonth_SelectedIndexChanged(object sender, EventArgs e)

 {

 int month = Convert.ToInt16(ddlMonth.SelectedValue);

 int thisMonth = DateTime.Today.Month;

 int thisYear = DateTime.Today.Year;

 clearEntries();

 if (month < thisMonth)

 thisYear++;

 string dateString = "01-" + month + "-" + thisYear;

 Calendar1.VisibleDate = Convert.ToDateTime(dateString);

 }

Bulid and run the booking.aspx web page and check that the changes that you have made are

functioning correctly:

 It should not be possible to select a date on the calendar until a boat has been selected.

 The ‘clear selection’ button clears both the calendar and the text boxes.

 The text boxes and calendar are cleared if a different month or different boat is selected

from the drop down lists.

Close the browser and stop debugging. We have now completed the inputs for an independently

operating Booking page. You may remember, however, that we also made a link to Bookings from

the Boats page. In that case, the user would already have chosen a boat and only needs to select the

date of their booking. We will program this option next…

 Chapter 10: Canal Boat Holidays 355

Open the C# code page for booking.aspx and add lines to the Page_Load() method. These enable

the Berths and Boat Name drop down lists, so that a boat can be selected. This is the situation if the

Booking page is being used independantly.

 protected void Page_Load(object sender, EventArgs e)

 {

 btnAvailability.Visible = true;

 ddlBerths.Enabled = true;

 ddlBoatNames.Enabled = true;

 if (canalBoat.boatCount == 0)

 {

 canalBoat.loadBoats();

 }

Go to the end of the Page_Load() method. Add a section of code which will check the page URL to

see if a canal boat had been previously selected on the Boats web page. If so, the Berths and Boat

Name drop down lists are disabled, and details of the selected boat are immediately displayed.

 if (ddlBoatNames.Text == "")

 {

 setBoatNames("2");

 Label1.Text =

 "Please select a boat and click button to show availability...";

 }

 boatIDwanted = Convert.ToInt16(Request.QueryString["boatID"]);

 if (boatIDwanted > 0 && txtStartDate.Text=="")

 {

 btnAvailability.Visible = false;

 ddlBerths.Enabled = false;

 ddlBoatNames.Enabled = false;

 for (int i = 0; i < canalBoat.boatCount; i++)

 {

 if (boatIDwanted == canalBoat.boatObject[i].boatID)

 {

 boatNameWanted = canalBoat.boatObject[i].boatName;

 int berthsWanted = canalBoat.boatObject[i].berths;

 string berths = Convert.ToString(berthsWanted);

 if (berthsWanted >= 6)

 {

 berths = "6-8";

 }

 displayBoat(boatNameWanted);

 ddlBerths.Text = berths;

 setBoatNames(berths);

 ddlBoatNames.Text = boatNameWanted;

 }

 }

 }

 }

356 Web Applications with C#.ASP

Build and run the web site. Choose the Boats page and select a canal boat. Click the ‘Check

available dates’ option. Check that you are taken to the Booking page, with the correct boat

displayed. You should then be able to select a hire period and the cost will be calculated, as before.

We can now enter contact details for the customer. This will be done on another page. Go to the

Solution Explorer window and right click the Canal holidays project icon. Select Add / New Item and

choose Web Form using Master Page. Give the name ‘customerDetails’. Select Site.Master as the

master page.

 Chapter 10: Canal Boat Holidays 357

Open the customerDetails.aspx page and add lines of code to set up a data entry form.

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="server">

 <table cellpadding="6">

 <tr>

 <td>Boat</td>

 <td>

 <asp:TextBox ID="txtBoatName" runat="server" Width="120px"></asp:TextBox>

 </td>

 <td>Start date</td>

 <td>

 <asp:TextBox ID="txtStartDate" runat="server" Width="120px"></asp:TextBox>

 </td>

 <td>Finish date</td>

 <td>

 <asp:TextBox ID="txtFinishDate" runat="server" Width="120px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Cost £</td>

 <td>

 <asp:TextBox ID="txtCost" runat="server" Width="120px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td colspan="6"><hr /></td>

 </tr>

 <tr>

 <td>Name of guest:</td>

 <td>

 <asp:DropDownList ID="ddlTitle" runat="server">

 <asp:ListItem Value="Mr"></asp:ListItem>

 <asp:ListItem Value="Mrs"></asp:ListItem>

 <asp:ListItem Value="Miss"></asp:ListItem>

 <asp:ListItem Value="Ms"></asp:ListItem>

 </asp:DropDownList>

 </td>

 <td>Forename *</td>

 <td>

 <asp:TextBox ID="txtForename" runat="server" Width="110px"></asp:TextBox>

 </td>

 <td>Surname *</td>

 <td>

 <asp:TextBox ID="txtSurname" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Address *</td>

 <td colspan="3">

 <asp:TextBox ID="txtAddress1" runat="server" Width="320px"></asp:TextBox>

 </td>

 </tr>

358 Web Applications with C#.ASP

 <tr>

 <td></td>

 <td colspan="3">

 <asp:TextBox ID="txtAddress2" runat="server" Width="320px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Town *</td>

 <td colspan="3">

 <asp:TextBox ID="txtTown" runat="server" Width="320px"></asp:TextBox>

 </td>

 <td>Post code *</td>

 <td>

 <asp:TextBox ID="txtPostcode" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr><td>

</td></tr>

 <tr>

 <td>E-mail *</td>

 <td colspan="3">

 <asp:TextBox ID="txtEmail" runat="server" Width="320px"></asp:TextBox>

 </td>

 <td>Phone *</td>

 <td>

 <asp:TextBox ID="txtPhone" runat="server"></asp:TextBox>

 </td>

 </tr>

 </table>

 <asp:Button ID="btnBook" runat="server" Text="Make booking" />

 <h3>

 <asp:Label ID="Label1" runat="server"></asp:Label>

 </h3>

</asp:Content>

 Build and run the customerDetails web page. Check that the data entry form is displayed correctly.

 Chapter 10: Canal Boat Holidays 359

Close the browser and stop debugging. We will first import the boat name, holiday dates and cost

from the Booking page. Go to the booking.aspx page and change to the Design view. Double click

the ‘Make booking’ button to create a button_click() method.

Add a line to the btnBook_Click() method which will load the customer details page, taking with it

the boat name, hire dates and cost.

 protected void btnBook_Click(object sender, EventArgs e)

 {

 Response.Redirect("customerDetails.aspx?boatName=" + boatNameWanted +

 "&startDate=" + txtStartDate.Text + "&finishDate=" +

 txtFinishDate.Text + "&cost=" + txtCost.Text);

 }

Go now to the C# page for customerDetails.aspx. Add variables at the start of the program, and

insert lines of code into the Page_Load() method.

 public partial class customerDetails : System.Web.UI.Page

 {

 string boatName;

 string startDate;

 string finishDate;

 string cost;

 protected void Page_Load(object sender, EventArgs e)

 {

 boatName = Convert.ToString(Request.QueryString["boatName"]);

 startDate = Convert.ToString(Request.QueryString["startDate"]);

 finishDate = Convert.ToString(Request.QueryString["finishDate"]);

 cost = Convert.ToString(Request.QueryString["cost"]);

 txtBoatName.Text = boatName;

 txtStartDate.Text = startDate;

 txtFinishDate.Text = finishDate;

 txtCost.Text = cost;

 }

360 Web Applications with C#.ASP

Build and run the booking.aspx web page. Select a canal boat and hire dates, then click the ‘Make

booking’ button. The customer details page should load. Check that the booking which you entered

is displayed correctly.

Close the browser and stop debugging. We are now ready to save customer details into the

database. Open the customerBookings.cs class file and add a makebooking() method

 public string phone { get; set; }

 public string dateReceived { get; set; }

 public static void makebooking(string boatName, string startDate,

 string finishDate, string cost, string customerTitle, string forename,

 string surname, string address1, string address2, string town,

 string postcode, string email, string phone)

 {

 string dateReceived = DateTime.Now.ToString("dd/MM/yyyy");

 SqlConnection cnTB = new SqlConnection(@"Data Source=.\SQLEXPRESS;

 AttachDbFilename=" + databaseLocation + "Integrated Security=True;

 Connect Timeout=30; User Instance=True");

 try

 {

 cnTB.Open();

 SqlCommand cmBooking = new SqlCommand();

 cmBooking.Connection = cnTB;

 cmBooking.CommandType = CommandType.Text;

 cmBooking.CommandText = "INSERT INTO bookings(boatName, startDate,

 finishDate, cost,customerTitle, forename, surname, address1,

 address2,town,postcode,email,phone,dateReceived) VALUES ('" +

 boatName + "','" + startDate + "','" + finishDate + "','" + cost +

 "','" + customerTitle + "','" + forename + "','" + surname + "','" +

 address1 + "','" + address2 + "','" + town + "','" + postcode +

 "','" + email + "','" + phone + "','" + dateReceived + "')";

 cmBooking.ExecuteNonQuery();

 cnTB.Close();

 }

 catch

 {

 }

 }

 Chapter 10: Canal Boat Holidays 361

Return to the customerDetails.aspx page and change to Design view. Double click the ‘Make

booking’ button to create a button_click() method.

A number of the data fields, maked with a * symbol on the page, require essential information. We

will give an error message to the user if any of these fields are left blank. Insert lines of code into the

btnBook_Click() method to do this. Also add a checkEntries() method. This works by checking the

lengths of the text strings entered, and identifies a length of zero as a blank entry.

 protected void btnBook_Click(object sender, EventArgs e)

 {

 bool completed = checkEntries();

 if (completed == true)

 {

 Label1.Text = "Thank you for your booking. Staff of Canal Boat Holidays will

 contact you shortly to make further arrangements for your holiday.";

 customerBookings.makebooking(boatName, startDate, finishDate, cost,
 ddlTitle.Text, txtForename.Text, txtSurname.Text, txtAddress1.Text,
 txtAddress2.Text, txtTown.Text, txtPostcode.Text, txtEmail.Text,
 txtPhone.Text);
 customerBookings.loadBookings();
 }

 else

 {

 Label1.Text = "Required fields marked * must be completed, please";

 }

 }

 protected bool checkEntries()

 {

 bool completed = true;

 if (txtForename.Text.Length == 0) completed = false;

 if (txtSurname.Text.Length == 0) completed = false;

 if (txtAddress1.Text.Length == 0) completed = false;

 if (txtTown.Text.Length == 0) completed = false;
 if (txtPostcode.Text.Length == 0) completed = false;
 if (txtEmail.Text.Length == 0) completed = false;
 if (txtPhone.Text.Length == 0) completed = false;
 return completed;

 }

362 Web Applications with C#.ASP

Build and run the customerDetails web page. Leave some of the required fields blank, then click the

‘Make booking’ button. Check that the error message appears.

Enter a full set of data for a booking, then click the ‘Make booking’ button again. A booking

acknowledgement message should be displayed. We will assume that Canal Boat Holidays will

contact the customer to arrange payment, though you could of course add a further web page to

handle payment by credit or debit card.

Close the browser and stop debugging. Go to the Server Explorer window and click the Refresh

button. Click right on the bookings table icon and select ‘Show Table Data’. Check that the booking

appears correctly in the table. If all is well, add further bookings for different boats and holiday

dates.

 Chapter 10: Canal Boat Holidays 363

One final task we must now carry out on the Bookings page is to show exisiting bookings on the

calendar, so that double bookings of boats are avoided. Open the C# page for booking.aspx and add

a bookedList variable at the start of the class. This list will hold the booked dates for the selected

canal boat, so that these days can be marked on the calendar.

 public partial class booking : System.Web.UI.Page

 {

 public static string boatNameWanted;

 public static int boatIDwanted;

 public static List<DateTime> bookedList = new List<DateTime>();

Go now to the Page_Load() method and add code to load the bookings from the database if these

have not already been loaded.

 protected void Page_Load(object sender, EventArgs e)

 {

 btnAvailability.Visible = true;

 ddlBerths.Enabled = true;

 ddlBoatNames.Enabled = true;

 if (customerBookings.bookingCount == 0)

 {

 customerBookings.loadBookings();

 }

 if (canalBoat.boatCount == 0)

 {

 canalBoat.loadBoats();

 }

Near the end of the Page_Load() method, add a line of code to call the displayBookings() method if

the user arrives at Bookings after previously selecting a canal boat from the Boats page. The

method takes the name of the required boat as a parameter so that the correct set of exisiting

bookings can be displayed on the claendar.

 displayBoat(boatNameWanted);
 ddlBerths.Text = berths;
 setBoatNames(berths);
 ddlBoatNames.Text = boatNameWanted;

 displayBookings(boatNameWanted);

 }
 }

364 Web Applications with C#.ASP

Insert the displayBookings() method immediately after the Page_Load() method.

 protected void displayBookings(string boatWanted)

 {

 string boat;

 string startDate;

 string finishDate;

 bookedList.Clear();

 for (int i = 0; i < customerBookings.bookingCount; i++)

 {

 boat = customerBookings.bookingObject[i].boatName;

 if (boat == boatNameWanted)

 {

 startDate = customerBookings.bookingObject[i].startDate;

 finishDate = customerBookings.bookingObject[i].finishDate;

 DateTime today = Convert.ToDateTime(startDate);

 DateTime lastDay = Convert.ToDateTime(finishDate);

 while (today < lastDay)

 {

 bookedList.Add(today);

 today = today.AddDays(1);

 }

 }

 }

 }

We also need to link the displayBookings() method to the ‘Show availability’ button, so the

calendar display can be updated if a different boat is selected. Add a line of code to do this.

 protected void btnAvailability_Click(object sender, EventArgs e)
 {
 boatNameWanted = Convert.ToString(ddlBoatNames.SelectedItem);
 displayBoat(boatNameWanted);

 displayBookings(boatNameWanted);

 }

Go now to the Calendar_DayRender() method. This currently sets all dates up to and including

today’s date as unavailable, and shades these in grey. We can use a similar method to obtain the

booked dates from bookedList and make these appear as unavailable. Add lines of code to the

method as shown below.

 Chapter 10: Canal Boat Holidays 365

 protected void Calendar1_DayRender(object sender, DayRenderEventArgs e)
 {
 DateTime currentDate = Calendar1.TodaysDate;

 if (e.Day.Date <= currentDate)
 {
 e.Day.IsSelectable = false;
 e.Cell.BackColor = Color.Gainsboro;
 }

 foreach (DateTime dt in bookedList)
 {
 if (e.Day.Date == dt.Date)
 {
 e.Day.IsSelectable = false;
 e.Cell.BackColor = Color.Gainsboro;
 }
 }

 }

Finally, we should clear the list of bookings for the current boat if the user selects a different group
of boats from the Berths drop down list. Add a line of code to ddlBerths_SelectedIndexChanged().

 protected void ddlBerths_SelectedIndexChanged(object sender, EventArgs e)
 {

 bookedList.Clear();

 setBoatNames(ddlBerths.Text);
 Label1.Text = "Please select a boat and click button to show availability...";
 }

Build and run the web site. Select boats, either directly using the Bookings page or by first visiting

the Boats page. Check that any existing bookings for that boat are indicated on the calendar and

these dates are disabled.

366 Web Applications with C#.ASP

Add further bookings, and check that these periods appear correctly on the calendar as unavailable

for further booking.

Close the web browser and stop debugging. This completes the public web site. We will now add a

staff option to display the bookings received. Open the staffBooking.aspx page and add lines of code

to the ‘Content2’ section.

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="server">

 <div id="bookingsContent">

 <table cellpadding="6">

 <tr>

 <td>Boat name</td>

 <td>

 <asp:DropDownList ID="ddlBoatNames" runat="server"></asp:DropDownList>

 </td>

 <td>

 <asp:Button ID="btnBookings" runat="server" Text="Show bookings" />

 </td>

 </tr>

 </table>

 <div id="bookingTable">

 <asp:Label ID="Label1" runat="server" ></asp:Label>

 </div>

 </div>

</asp:Content>

 Chapter 10: Canal Boat Holidays 367

Open the Style Sheet and add formatting code for the bookingsContent and bookingTable divisions.

#bookingsContent

 {

 width: 1040px;

 height: 600px;

 background-color: #FFFFFF;

 padding:20px;

 }

 #bookingTable

{

 height:480px;

 overflow-y: scroll;

 overflow-x: hidden;

}

Move now to the C# page for staffBooking.aspx and add lines of code to the Page_Load() method.

This program code will load the canal boat and customer bookings records, then add the boat names

to the drop down list.

 protected void Page_Load(object sender, EventArgs e)

 {

 if (canalBoat.boatCount == 0)

 {

 canalBoat.loadBoats();

 }

 if (customerBookings.bookingCount == 0)

 {

 customerBookings.loadBookings();

 }

 if (ddlBoatNames.Text == "")

 {

 ddlBoatNames.Items.Clear();

 ddlBoatNames.Items.Add("ALL BOOKINGS");

 for (int i = 0; i < canalBoat.boatCount; i++)

 {

 ddlBoatNames.Items.Add(canalBoat.boatObject[i].boatName);

 }

 }

 }

368 Web Applications with C#.ASP

Build and run the staffBooking web page. Check that the boat names are displayed in the drop down

list. The boat names are not in sorted order, but it would be more convenient for the user if they

were displayed alphabetically. This can easily be arranged…

Close the browser and stop debugging. Go to the canalBoat.cs class file and find the loadBoats()

method. Locate the line cmBoat.CommandText = "SELECT * FROM boats" and modify this by

adding a sort command. The boat records will now be loaded in ascending alphabetical order of boat

name.

 try

 {

 cnTB.Open();

 SqlCommand cmBoat = new SqlCommand();

 cmBoat.Connection = cnTB;

 cmBoat.CommandType = CommandType.Text;

 cmBoat.CommandText = "SELECT * FROM boats ORDER BY boatName ASC";

 SqlDataAdapter daBoat = new SqlDataAdapter(cmBoat);

Build and run the staffBooking web page again. The boat names should now appear alphabetically

in the drop down list.

Close the browser and stop debugging. Go to the staffBooking.aspx page and select Design view.

Double click the ‘Show bookings’ button to create a button_click() method. Add lines of code to

produce a table of bookings, as shown below.

 Chapter 10: Canal Boat Holidays 369

 protected void btnBookings_Click(object sender, EventArgs e)

 {

 string s = "";

 string boatname;

 s += "<table border=1 cellpadding=6>";

 s += "<tr>";

 s += "<th>Booking ID</th>";

 s += "<th>Date received</th>";

 s += "<th>Boat name</th>";

 s += "<th>Start date </th>";

 s += "<th>Finish date</th>";

 s += "<th>Customer</th>";

 s += "<th>Town</th>";

 s += "<th>Cost £</th>";

 s += "<tr>";

 string boatSelected = ddlBoatNames.Text;

 bool allBookings = false;

 if (boatSelected == "ALL BOOKINGS")

 {

 allBookings = true;

 }

 for (int i = 0; i < customerBookings.bookingCount; i++)

 {

 boatname = customerBookings.bookingObject[i].boatName;

 if (allBookings == true || boatSelected == boatname)

 {

 s += "<tr>";

 s += "<td>" + customerBookings.bookingObject[i].bookingID + "</td>";

 s += "<td>" + customerBookings.bookingObject[i].dateReceived + "</td>";

 s += "<td>" + boatname + "</td>";

 s += "<td>" + customerBookings.bookingObject[i].startDate + "</td>";

 s += "<td>" + customerBookings.bookingObject[i].finishDate + "</td>";

 s += "<td>" + customerBookings.bookingObject[i].forename + "" +

 customerBookings.bookingObject[i].surname + "</td>";

 s += "<td>" + customerBookings.bookingObject[i].town + "</td>";

 s += "<td>" + customerBookings.bookingObject[i].cost + "</td>";

 s += "<td><a href=staffBookingDetails.aspx?bookingID=" +

 customerBookings.bookingObject[i].bookingID + ">details</td>";

 s += "</tr>";

 }

 }

 s += "</table>";

 Label1.Text = s;

 }

Notice that we have included an ‘ALL BOATS’ option, when all booking records are displayed. In

other cases, the program first checks whether each record is for the selected boat.

370 Web Applications with C#.ASP

Build and run the staffBooking web page. Check that records are displayed correctly for selected

boats and for all boats.

When operating the business, staff will probably wish to see the newly arrived bookings first, so the

bookings should be organised in descending order of date. This can be carried out in a similar way to

the sorting of the boat names.

Close the browser and stop debugging. Go to the customerBookings.cs class file and find the

loadBookings() method. Locate the line cmBooking.CommandText = "SELECT * FROM bookings"

and modify this by adding a sort command. The booking records will now be loaded in descending

order of bookingID, with the most recently received booking first.

 try

 {

 cnTB.Open();

 SqlCommand cmBooking = new SqlCommand();

 cmBooking.Connection = cnTB;

 cmBooking.CommandType = CommandType.Text;

 cmBooking.CommandText = "SELECT * FROM bookings ORDER BY bookingID DESC";

 SqlDataAdapter daBooking = new SqlDataAdapter(cmBooking);

Build and run the staffBooking web page and check that the bookings are displayed in the required

order. Notice that an option has been placed alongside each booking to view details. We will work

on this now…

 Chapter 10: Canal Boat Holidays 371

Close the browser and stop debugging. Go to the Solution Explorer window and right click the Canal

holidays project icon. Select Add / New Item and choose Web Form using Master Page. Give the

name ‘staffBookingDetails’. Select staffSite.Master as the master page.

Open the staffBookingDetails.aspx page and add code to the ‘Content2’ section.

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="server">

 <div id="bookingsContent">

 <table cellpadding="6">

 <tr>

 <td>Booking ID</td>

 <td>

 <asp:TextBox ID="txtBookingID" runat="server" Width="120px"></asp:TextBox>

 </td>

 <td>Date received</td>

 <td>

 <asp:TextBox ID="txtReceived" runat="server" Width="120px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td colspan="6"><hr /></td>

 </tr>

 <tr>

 <td>Boat</td>

 <td>

 <asp:TextBox ID="txtBoatName" runat="server" Width="120px"></asp:TextBox>

 </td>

 <td>Start date</td>

 <td>

 <asp:TextBox ID="txtStartDate" runat="server" Width="120px"></asp:TextBox>

 </td>

 <td>Finish date</td>

372 Web Applications with C#.ASP

 <td>

 <asp:TextBox ID="txtFinishDate" runat="server" Width="120px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Cost £</td>

 <td>

 <asp:TextBox ID="txtCost" runat="server" Width="120px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td colspan="6"><hr /></td>

 </tr>

 <tr>

 <td>Title</td>

 <td>

 <asp:TextBox ID="txtTitle" runat="server" Width="60px"></asp:TextBox>

 </td>

 <td>Forename</td>

 <td>

 <asp:TextBox ID="txtForename" runat="server" Width="111px"></asp:TextBox>

 </td>

 <td>Surname</td>

 <td>

 <asp:TextBox ID="txtSurname" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Address</td>

 <td colspan="3">

 <asp:TextBox ID="txtAddress1" runat="server" Width="320px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td></td>

 <td colspan="3">

 <asp:TextBox ID="txtAddress2" runat="server" Width="320px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Town</td>

 <td colspan="3">

 <asp:TextBox ID="txtTown" runat="server" Width="320px"></asp:TextBox>

 </td>

 <td>Post code</td>

 <td>

 <asp:TextBox ID="txtPostcode" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>

</td>

 </tr>

 <tr>

 Chapter 10: Canal Boat Holidays 373

 <td>E-mail</td>

 <td colspan=3>

 <asp:TextBox ID="txtEmail" runat="server" Width="320px"></asp:TextBox>

 </td>

 <td>Phone</td>

 <td><asp:TextBox ID="txtPhone" runat="server"></asp:TextBox></td>

 </tr>

 </table>

 </div>

 </asp:Content>

Go to the C# code page for staffBookingDetails.aspx and add a bookingIDwanted variable. Insert

lines of code in the Page_Load() method, and add a displayBooking() method.

 public partial class staffBookingDetails : System.Web.UI.Page

 {

 int bookingIDwanted;

 protected void Page_Load(object sender, EventArgs e)

 {

 bookingIDwanted = Convert.ToInt16(Request.QueryString["bookingID"]);

 txtBookingID.Text = Convert.ToString(bookingIDwanted);

 displayBooking(bookingIDwanted);

 }

 protected void displayBooking(int bookingIDwanted)

 {

 int bookingID;

 for (int i = 0; i < customerBookings.bookingCount; i++)

 {

 bookingID = customerBookings.bookingObject[i].bookingID;

 if (bookingID == bookingIDwanted)

 {

 txtReceived.Text = customerBookings.bookingObject[i].dateReceived;

 txtBoatName.Text = customerBookings.bookingObject[i].boatName;

 txtStartDate.Text = customerBookings.bookingObject[i].startDate;

 txtFinishDate.Text = customerBookings.bookingObject[i].finishDate;

 txtCost.Text = Convert.ToString(customerBookings.bookingObject[i].cost);

 txtTitle.Text = customerBookings.bookingObject[i].customerTitle;

 txtForename.Text = customerBookings.bookingObject[i].forename;

 txtSurname.Text = customerBookings.bookingObject[i].surname;

 txtAddress1.Text = customerBookings.bookingObject[i].address1;

 txtAddress2.Text = customerBookings.bookingObject[i].address2;

 txtTown.Text = customerBookings.bookingObject[i].town;

 txtPostcode.Text = customerBookings.bookingObject[i].postcode;

 txtEmail.Text = customerBookings.bookingObject[i].email;

 txtPhone.Text = customerBookings.bookingObject[i].phone;

 }

 }

 }

374 Web Applications with C#.ASP

This completes the programming for the booking display. Build and run the staffBooking.aspx web

page, select a canal boat booking then click the details option. Check that the full booking

information is shown correctly.

We will end the example project at this point. For a real booking system, options would also be

needed for amending booking details and deleting cancelled bookings. You might like to add these

options, using similar techniques to the Hardware Store project in chapter 9.

